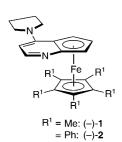
Asymmetric Catalysis


DOI: 10.1002/ange.200802439

Enantioselective Nucleophilic Catalysis: The Synthesis of Aza- β -Lactams through [2+2] Cycloadditions of Ketenes with Azo Compounds**

Jacob M. Berlin and Gregory C. Fu*

Even though aza- β -lactams have attracted interest because of their biological activity^[1] and their utility as intermediates in organic chemistry (e.g., for the generation of α -amino acids and hydantoins),^[2-4] only limited progress has been reported with regard to the enantioselective synthesis of this family of heterocycles.^[5] One attractive, convergent approach to the formation of aza- β -lactams is the [2+2] cycloaddition of a ketene with an azo compound [Eq. (1)]. To the best of our knowledge, no stereoselective variants of this process have yet been reported.

We have been exploring the use of chiral derivatives of PPY (4-pyrrolidinopyridine; e.g., $\mathbf{1}$ and $\mathbf{2}$) as enantioselective catalysts for an array of transformations, [7] including couplings of ketenes with imines [8] or with aldehydes. [9,10] Although there are no reports of nucleophilic catalysis for [2+2] cycloadditions of ketenes with azo compounds, we were intrigued by the possibility that our planar-chiral pyridines

might be effective in this role. Herein, we establish that PPY derivative $\mathbf{1}$ effects the first catalytic asymmetric synthesis of aza- β -lactams, through [2+2] cycloadditions of ketenes with azo compounds [Eq. (2)].

Initially, we examined the cycloaddition of phenyl ethyl ketene with dimethyl azodicarboxylate (1.0 equiv). We found that the planar-chiral PPY derivative 1 serves as an effective catalyst for the desired coupling, and generates the aza- β -lactam in good yield and enantioselectivity (Table 1, entry 1; in the absence of a catalyst there is no reaction: Table 1, entry 2).

Table 1: Effect of changing the "standard" reaction conditions (outlined in the equation below) in the nucleophile-catalyzed enantioselective synthesis of aza- β -lactams.

Ph Et R
$$\frac{5\% \text{ (-)-1}}{\text{CH}_2\text{Cl}_2}$$
 $\frac{1}{\text{Ph}}$ $\frac{1}{\text{Et}}$ R = $\frac{1.0}{\text{equiv}}$ equiv

Entry	Change from the "standard" reaction conditions	ee [%]	Yield [%]
1	none	86	89
2	no (—)- 1	_	< 5
3	(-)- 2 , instead of (-)- 1	$-15^{[a]}$	65
4	(+)-3, instead of $(-)$ -1	< 5	65
5	quinine, instead of $(-)-1$	_	< 5
6	$R = CO_2Et$	80	85
7	$R = CO_2iPr$	32	81
8	$R = CO_2CH_2CCI_3$	20	20
9	R = CO(piperidinyl)	_	< 5
10	CICH ₂ CH ₂ Cl, instead of CH ₂ Cl ₂	87	65
11	−30°C	85	68
12	−10°C	73	68

[a] A negative *ee* value signifies that the opposite enantiomer of the product is formed preferentially.

Under the same reaction conditions, a related catalyst (2), as well as a variety of chiral phosphines and cinchona alkaloids, provide poor enantioselectivity or little of the cycloaddition product (Table 1, entries 3–5). The substituents of the azo compound have a significant impact on the *ee* value and the yield, with the methoxycarbonyl group affording the best results (Table 1, compare entry 1 with entries 6–9). If

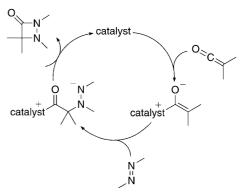
[*] Dr. J. M. Berlin, Prof. Dr. G. C. Fu Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: (+1)617-324-3611 E-mail: gcf@mit.edu

[**] We thank Dr. Xing Dai, Dr. Maximilian Dochnahl, and Takashi Nakai for helpful discussions and for experimental assistance. Support was provided by the NIH (National Institute of General Medical Sciences: grant no. R01-GM57034), Merck Research Laboratories, and Novartis.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200802439.

ClCH₂CH₂Cl rather than CH₂Cl₂ is employed as the solvent, then the formation of the aza- β -lactam is less efficient (Table 1, compare entry 1 with entry 10). The reaction temperature of choice appears to be -20°C (Table 1, compare entry 1 with entries 11 and 12).^[13]

The optimized reaction conditions can be applied to the enantioselective synthesis of aza- β -lactams when starting from a variety of ketenes (Table 2). If the alkyl group is


Table 2: Nucleophile-catalyzed enantioselective synthesis of aza- β -lactams (see [Eq. (2)] for the reaction conditions).^[a]

-				
Entry	Ar	Alkyl	ee [%]	Yield [%] ^[b]
1	Ph	Me	85	53
2	Ph	Et	86 (>99) ^[c]	89
3	m-tolyl	Et	85	79
4	o-tolyl	Et	67	46
5	o-anisyl	Et	93	89
6	Ph	Bn	81	73
7	Ph	<i>i</i> Bu	83	87
8	Ph	cyclopentyl	86	84
9	Ph	cyclohexyl	94	90
10	Ph	<i>i</i> Pr	95	91
11	<i>p</i> -anisyl	iPr	96	91
12	p-CIC ₆ H ₄	iPr	92	90
13	3-thiophenyl	iPr	96	90

[a] All data are the average of two experiments. [b] Yield of isolated product. [c] The *ee* value was determined after a single recrystallization from isopropanol (overall yield: 71%).

small (i.e., Me or a primary substituent), then the desired heterocycle is generally produced with good (but not excellent) enantioselectivity (\approx 85% ee; Table 2, entries 1–7). Fortunately, the ee values of the aza-β-lactam products is readily enhanced by recrystallization (e.g., the product generated from phenyl ethyl ketene can be obtained in > 99% ee after a single recrystallization; see Table 2, entry 2). In the case of ketenes that bear a secondary alkyl group, catalyst 1 typically furnishes the aza-β-lactam with very good enantioselectivity and yield (>90% ee; Table 2, entries 8–13). [14]

A plausible mechanism for this new nucleophile-catalyzed method for the synthesis of aza- β -lactams is illustrated in Figure 1. Interestingly, the configuration at the quaternary stereocenter is different from that produced in Staudinger reactions that are catalyzed by 1 [Eq. (3); Ts = 4-toluenesulfonyl], [8b] and which are believed to proceed through a similar pathway. [15]

Figure 1. Possible mechanism for the nucleophile-catalyzed synthesis of aza- β -lactams.

In conclusion, we have developed a new process, the nucleophile-catalyzed [2+2] cycloaddition of ketenes with azo compounds, to generate aza- β -lactams. In addition, we have established that planar-chiral PPY derivative 1 effects this convergent transformation to give good enantioselectivity, thereby providing the first catalytic asymmetric synthesis of this useful family of heterocycles.

Experimental Section

General procedure: Solutions of the ketene (0.68 mmol) and dimethyl azodicarboxylate (100 mg, 0.68 mmol) in $\mathrm{CH_2Cl_2}$ (49 mL), and of the catalyst (–)-1 (13 mg, 0.035 mmol) in $\mathrm{CH_2Cl_2}$ (0.8 mL) were prepared in a glove box. Following removal from the glove box, the solutions were cooled at $-20\,^{\circ}\mathrm{C}$ for 10 min, before the catalyst solution was added to the solution of ketene/dimethyl azodicarboxylate by syringe. After the reaction mixture was stirred for 2 h at $-20\,^{\circ}\mathrm{C}$, the solvent was removed in vacuo and the residue was purified by column chromatography.

Received: May 25, 2008 Published online: July 30, 2008

Keywords: asymmetric catalysis · azo compounds · heterocycles · homogeneous catalysis · lactams

- For an example, see: H. Morioka, M. Takezawa, H. Shibai, T. Okawara, M. Furukawa, Agric. Biol. Chem. 1986, 50, 1757–1764.
- [2] For leading references on the synthesis and utility of enantioenriched α,α-disubstituted α-amino acids, see: a) C. Cativiela, M. D. Diaz-de-Villegas, *Tetrahedron: Asymmetry* **2007**, *18*, 569–623; b) H. Vogt, S. Bräse, *Org. Biomol. Chem.* **2007**, *5*, 406–430.
- [3] a) For leading references on the synthesis and utility of hydantoins, see: M. Meusel, M. Gütschow, Org. Prep. Proced. Int. 2004, 36, 391–443; b) phenytoin sodium and fosphenytoin, which serve as medications to treat epilepsy, are examples of bioactive hydantoins.
- [4] For examples of methods for the synthesis of aza-β-lactams, see:
 a) L. S. Hegedus, B. R. Lundmark, J. Am. Chem. Soc. 1989, 111, 9194–9198;
 b) E. C. Taylor, N. F. Haley, R. J. Clemens, J. Am. Chem. Soc. 1981, 103, 7743–7752;
 c) G. Lawton, C. J. Moody, C. J. Pearson, J. Chem. Soc. Perkin Trans. 1 1987, 899–902.
- [5] K. Achiwa, S.-i. Yamada, Tetrahedron Lett. 1974, 15, 1799 1802.
- [6] For a pioneering study, see: A. H. Cook, D. G. Jones, J. Chem. Soc. 1941, 184–187.

Zuschriften

- [7] For references to early studies, see: a) G. C. Fu, Acc. Chem. Res.
 2004, 37, 542-547; for recent studies, see: b) E. C. Lee, K. M. McCauley, G. C. Fu, Angew. Chem. 2007, 119, 995-997; Angew. Chem. Int. Ed. 2007, 46, 977-979; c) X. Dai, T. Nakai, J. A. C. Romero, G. C. Fu, Angew. Chem. 2007, 119, 4445-4447; Angew. Chem. Int. Ed. 2007, 46, 4367-4369.
- [8] a) E. C. Lee, B. L. Hodous, E. Bergin, C. Shih, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11586–11587; b) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 1578–1579.
- [9] J. E. Wilson, G. C. Fu, Angew. Chem. 2004, 116, 6518-6520; Angew. Chem. Int. Ed. 2004, 43, 6358-6360.
- [10] For an overview on the chemistry of ketenes, see: T. T. Tidwell, Ketenes, Wiley-Interscience, New York, 2006.
- [11] For examples where phosphepine 3 is used as a chiral nucleophilic catalyst, see: a) R. P. Wurz, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 12234–12235; b) J. E. Wilson, G. C. Fu, Angew. Chem. 2006, 118, 1454–1457; Angew. Chem. Int. Ed. 2006, 45, 1426–1429.
- [12] For a review of the use of chiral amines as enantioselective nucleophilic catalysts, see: S. France, D. J. Guerin, S. J. Miller, T. Lectka, *Chem. Rev.* 2003, 103, 2985-3012.

- [13] Notes: a) dimerization of the ketene is sometimes observed as an undesired side reaction; b) the use of non-chlorinated solvents can lead to significant changes in enantioselectivity.
- [14] Notes: a) use of diethyl, rather than dimethyl, azodicarboxylate for reactions of phenyl ethyl ketene and *p*-chlorophenyl isopropyl ketene led to 85% yield with 80% *ee* (see Table 2, entry 2) and 96% yield with 86% *ee* (see Table 2, entry 12), respectively; b) this method is not highly air- or moisture-sensitive: for a cycloaddition of phenyl ethyl ketene which was carried out in air and with unpurified CH₂Cl₂, a fairly good yield and *ee* value were observed (77% yield, 83% *ee*); c) a reaction conducted on 1 g of phenyl ethyl ketene proceeded in 77% yield with 84% *ee*; d) for the conversion of one of these aza-β-lactams into a hydantoin and an α,α-disubstituted amino acid, see the Supporting Information.
- [15] Note: the ee value of the product correlates linearly with that of the catalyst. For a review of non-linear effects in asymmetric catalysis, see: H. B. Kagan, T. O. Luukas in Comprehensive Asymmetric Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, New York, 1999, Chapter 4.1.